44 research outputs found

    Search for Deeply Bound Kaonic Nuclear States with AMADEUS

    Full text link
    We briefly report on the search for Deeply Bound Kaonic Nuclear States with AMADEUS in the Sigma0 p channel following K- absorption on 12C and outline future perspectives for this work

    Shedding New Light on Kaon-Nucleon/Nuclei Interaction and Its Astrophysical Implications with the AMADEUS Experiment at DAFNE

    Get PDF
    The AMADEUS experiment deals with the investigation of the low-energy kaon-nuclei hadronic interaction at the DA{\Phi}NE collider at LNF-INFN, which is fundamental to respond longstanding questions in the non-perturbative QCD strangeness sector. The antikaon-nucleon potential is investigated searching for signals from possible bound kaonic clusters, which would open the possibility for the formation of cold dense baryonic matter. The confirmation of this scenario may imply a fundamental role of strangeness in astrophysics. AMADEUS step 0 consisted in the reanalysis of 2004/2005 KLOE dataset, exploiting K- absorptions in H, 4He, 9Be and 12C in the setup materials. In this paper, together with a review on the multi-nucleon K- absorption and the particle identification procedure, the first results on the {\Sigma}0-p channel will be presented including a statistical analysis on the possible accomodation of a deeply bound stateComment: 6 pages, 2 figure, 1 table, HADRON 2015 conferenc

    First measurement of the K−n →Λπ−non-resonant transition amplitude below threshold

    Get PDF
    We present the analysis of K−absorption processes on He4 leading to Λπ−final states, measured with the KLOE spectrometer at the DAΦNE e+e−collider and extract, for the first time, the modulus of the non-resonant K−n →Λπ−direct production amplitude about 33 MeV below the K‾N threshold. This analysis also allows to disentangle the K−nuclear absorption at-rest from the in-flight capture, for K−momenta of about 120 MeV. The data are interpreted with the help of a phenomenological model, and the modulus of the non-resonant K−n →Λπ−amplitude for K−absorption at-rest is found to be |AK−n→Λπ−|=(0.334±0.018stat−0.058+0.034syst)fm

    Unprecedented studies of the low-energy negatively charged kaons interactions in nuclear matter by AMADEUS

    Get PDF
    The AMADEUS experiment aims to provide unique quality data of KK^- hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405)\Lambda(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon KK^- absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters. AMADEUS takes advantage of the DAΦ\PhiNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for KK^- nuclear capture on H, 4{}^4He, 9{}^{9}Be and 12{}^{12}C, both at-rest and in-flight. During the second half of 2012 a successful data taking was performed with a dedicated pure carbon target implemented in the central region of KLOE, providing a high statistic sample of pure at-rest KK^- nuclear interactions. For the future dedicated setups involving cryogenic gaseous targets are under preparation.Comment: 14 pages, 6 figure

    Low-energy antikaon-nuclei interactions studies by AMADEUS : from QCD with strangeness to neutron stars

    Get PDF
    The AMADEUS collaboration aims to provide unique quality results from K− hadronic interactions in light nuclear targets, in order to solve fundamental open questions in the non-perturbative strangeness QCD sector, like the controversial nature of the Λ(1405) state, the yield of hyperon formation below threshold, the yield and shape of multi-nucleon K− absorption, processes which are intimately connected to the possible existence of exotic antikaon multi-nucleon clusters and to the role of strangeness in neutron stars. AMADEUS takes advantage of the DAΦNE collider, which provides a unique source of monochromatic low-momentum kaons and exploits the KLOE detector as an active target, in order to obtain excellent acceptance and resolution data for K− nuclear capture on H, 4He, 9Be and 12C, both at-rest and in-flight

    Antikaon interactions with nucleons and nuclei : AMADEUS at DaΦ\Phine

    Get PDF
    The aim of AMADEUS is to provide unprecedented experimental information on K^- absorption in light nuclear targets, to face major open problems in hadron nuclear physics in the strangeness sector, namely the nature of the Λ\Lambda(1405), strongly related to the possible existence of kaonic nuclear clusters, kaons and hyperon scattering cross sections on nucleons and nuclei. These issues are fundamental for a better understanding of the non-perturbative QCD in the strangeness sector. AMADEUS step 0 deals with the analysis of the 2004-2005 KLOE collected data. The interactions of the negative kaons produced by the DAΦ\PhiNE collider (a unique source of monochromatic low-momentum kaons) with the materials of the KLOE detector, used as active targets, provide samples of K^- absorptions on H, 4{}^4He, 9{}^{9}Be and 12{}^{12}C, both at-rest and in-flight. A second step deals with the data from the implementation in the central region of the KLOE detector of a pure graphite target, providing a high statistic sample of K12^- \, {}^{12}C nuclear captures at rest. For the future a new setup, with various dedicated gaseous and solid targets, is under preparation.Comment: 10 pages, 3 figure
    corecore